
Craig’s XY distribution and the statistics of Lagrangian power in two-dimensional turbulence

Mahesh M. Bandi1,* and Colm Connaughton2,3,†

1Condensed Matter & Thermal Physics Group (MPA-10) and Center for Nonlinear Studies (T-CNLS),
LANL, Los Alamos, New Mexico 87545, USA

2Complex Systems Group (T-13) and Center for Nonlinear Studies (T-CNLS), LANL, Los Alamos, New Mexico 87545, USA
3Centre for Complexity Science & Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

�Received 17 October 2007; revised manuscript received 18 January 2008; published 28 March 2008�

We examine the probability distribution function �PDF� of the energy injection rate �power� in numerical
simulations of stationary two-dimensional �2D� turbulence in the Lagrangian frame. The simulation is designed
to mimic an electromagnetically driven fluid layer, a well-documented system for generating 2D turbulence in
the laboratory. In our simulations, the forcing and velocity fields are close to Gaussian. On the other hand, the
measured PDF of injected power is very sharply peaked at zero, suggestive of a singularity there, with tails
which are exponential but asymmetric. Large positive fluctuations are more probable than large negative
fluctuations. It is this asymmetry of the tails which leads to a net positive mean value for the energy input
despite the most probable value being zero. The main features of the power distribution are well described by
Craig’s XY distribution for the PDF of the product of two correlated normal variables. We show that the power
distribution should exhibit a logarithmic singularity at zero and decay exponentially for large absolute values
of the power. We calculate the asymptotic behavior and express the asymmetry of the tails in terms of the
correlation coefficient of the force and velocity. We compare the measured PDFs with the theoretical calcula-
tions and briefly discuss how the power PDF might change with other forcing mechanisms.
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I. INTRODUCTION

Since turbulence is an intrinsically dissipative phenom-
enon, it requires an external source of energy to sustain it.
For a turbulent flow in a statistically stationary state, the rate
of injection of energy into the system from this external en-
ergy source, the input power, is equal, on average, to the rate
of dissipation of energy by small-scale viscous processes.
The fact that equality holds only on average is crucial. Since
the input power is typically calculated as a product of an
external force with the fluid velocity, both being fluctuating
quantities, it is itself a fluctuating quantity with a full statis-
tics of its own. Locally in space or in time this injected
power need not balance the corresponding rate of dissipation.
In fact, it need not even remain positive.

Understanding the rate of energy injection in turbulence is
of considerable importance in an engineering context, since
it relates to the power required to overcome turbulent drag to
sustain the rotation of a fan or turbine at a given speed in a
turbulent flow �see, for example, �1��. In this context, much
research focuses on the mean value of the power and how it
scales with the Reynolds number. Such measurements, fo-
cusing on the mean power, in the context of Taylor-Couette
flow were first performed by Lathrop et al. �2�. Subsequent
research has focused on measuring the probability distribu-
tion function �PDF� of the power fluctuations as well as the
mean value in several turbulent systems including von
Kármán flows �3,4�, electroconvection �5�, wave turbulence
�6�, and turbulent convection �7�. In this latter case, it was
the heat transfer rather than the power which was measured.

Much of the recent work has focused on finding macroscopic
nonequilibrium systems on which to test various nonequilib-
rium “fluctuation relations” �8–10� which have attracted
much theoretical interest in recent years. In simple terms,
these relations express a symmetry of the probability distri-
bution of some time-integrated quantity associated with the
dissipation or entropy production in a nonequilibrium sys-
tem. For a review, see �11� and the references therein.

All of the works cited above have focused on measure-
ments of the statistics of global quantities. All have observed
nontrivial probability distributions, typically with exponen-
tial tails, but to date, most of the discussions of the power
distribution have been qualitative. In this article we use the
notion of Lagrangian turbulence as a local measure of the
energy injection into a turbulent flow. We measure the prob-
ability distribution from numerical simulations and give a
quantitative explanation of the observed distribution in terms
of Craig’s XY distribution for the product of correlated
Gaussian variables. Although one can test the fluctuation re-
lation for Lagrangian power fluctuations �12�, this is not the
purpose of the present article. We shall focus on the statistics
of the power itself rather than its time integral.

The outline of the paper is as follows. We first give some
background on turbulence in two dimensions �2D�, explain-
ing the difference between the direct and inverse cascades.
We then give some details of our numerical simulations and
introduce the notion of Lagrangian measurements and the
concept of Lagrangian power as a diagnostic of the energy
injection into a turbulent flow. We then derive some
asymptotic properties of the probability distribution of the
product of two correlated normal variables �Craig’s XY dis-
tribution�. We then return to the turbulence data and explain
our measurements of the Lagrangian power in terms of
Craig’s XY distribution.
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II. LAGRANGIAN TURBULENCE IN TWO DIMENSIONS

The physics of forced turbulence in 2D differs essentially
from its three-dimensional counterpart. This difference can
be traced to the presence of a second inviscid invariant in
2D, in addition to the energy. It is called enstrophy. The
pivotal role of the enstrophy was first elucidated in seminal
work by Kraichnan �13�, Leith �14�, and Batchelor �15�
�KLB� which has since come to be considered as the classi-
cal theory of turbulence in 2D. The essential insight of the
KLB theory is that simultaneous energy and enstrophy con-
servation requires the establishment of a second cascade with
an independent dissipation mechanism if a stationary state is
to be reached. In this dual-cascade picture, the enstrophy
cascades from the forcing scale to smaller scales whereas the
energy simultaneously cascades from the forcing scale to
larger scales. This latter phenomenon, entirely absent in 3D,
is known as an inverse cascade. Viscosity dissipates enstro-
phy at small scales whereas friction between the fluid layer
and the substrate on which it moves �Ekman damping� dis-
sipates energy at large scales. Assuming asymptotically large
separation of the forcing and dissipation scales for both cas-
cades and applying standard Kolmogorov phenomenology
�16�, the KLB theory predicts that the energy spectrum in the
direct cascade range should scale as k−3 and in the inverse
cascade range as k−5/3 where k is the modulus of the wave-
vector k�. These spectra carry constant fluxes of enstrophy or
energy through their respective inertial ranges—that is,
ranges of scales over which forcing and dissipation are neg-
ligible. This dual-cascade theory has been shown to be in
reasonable agreement with numerical simulations provided
that a sufficiently large inertial range is available to each
cascade �17�. Experimentally, both direct and inverse cas-
cades have been observed �18�. While observing both cas-
cades simultaneously is rather difficult, there is broad agree-
ment that the KLB theory is correct asymptotically. See �19�
for a review of experiments.

Much research has focused on the inverse cascade in iso-
lation since it is responsible for the generation of large-scale
coherent motions in two-dimensional flow and, despite the
intertwining of the two cascades in the KLB theory, it is
known to persist even when the direct cascade range is un-
derdeveloped �20�. Numerical experiments �21� strongly sup-
port the k−5/3 scaling for the inverse cascade spectrum, labo-
ratory experiments �22� are consistent, and the
phenomenological KLB description of inverse energy trans-
fer has been put on a firm quantitative basis �23�.

We solve the incompressible Navier-Stokes equation with
Ekman term for the 2D velocity field v�x , t�:

�v

�t
+ �v · ��v + �p = ��2v − �v + f ,

� · v = 0. �1�

Here, f�x , t� is a forcing term �discussed below� and p�x , t� is
the pressure field. The parameters � �viscosity� and � �Ek-
man friction coefficient� control the dissipation at small and
large scales, respectively. As a result of using physical dissi-
pation terms rather than hyperviscosity, for example, we do

not develop a large inertial interval in our simulations, which
are quite small. The modest inertial intervals in our simula-
tions do not pose problems. We are interested in studying
energy injection into a turbulent flow. Unlike properties
which follow from scaling arguments, this is not an
asymptotic property and does not require the Reynolds num-
ber, Re, tend to �. Nevertheless, we use several different
simulations at different values of R to probe the robustness
of our results. The simulations are done in a doubly periodic
box of size L=2� using a standard pseudospectral solver
with full de-aliasing. For the inverse cascade simulations, we
used computational domains of sizes 2562, 5122, and 10242

in order to investigate the effects of varying Reynolds num-
ber. For comparison purposes, we also performed a small
simulation of the direct cascade regime at a resolution of
2562. Time integration was done using a third-order Runge-
Kutta integrator with integrating factors.

Unlike many numerical simulations of turbulence, the
forcing term which we used is deterministic. It was designed
to model the electromagnetic forcing which is a popular ex-
perimental method of driving turbulence in thin fluid layers
�22,24�. The idea is to place an array of magnets underneath
the fluid layer in some particular arrangement. One then
passes an electric current, which may have some nontrivial
time dependence, through the fluid layer so that the Lorentz
force produces a quasi-2D body force on the layer. Suppose
that the electric current is applied in the x direction. Denote it
by I�t�= I�t�x̂, with x̂ being the unit vector in the x direction.
If B�x�=B�x�ẑ denotes the �vertical component of� the mag-
netic field generated by the magnet array, then the body force
exerted on the fluid is

f�x,t� = gI�t� � B�x� , �2�

where g is a phenomenological coupling parameter which
measures the strength of the coupling of the fluid to the
magnetic field. Having applied the current in the x direction,
the force acts purely in the y direction. In this article, we
consider both the direct current �dc� case in which I�t� is
independent of time and the alternating current �ac� case
where I�t� is sinusoidal. Both are experimentally relevant. To
produce an inverse cascade, the magnetic field is chosen to
excite modes at small scales. For the direct cascade the mag-
netic field is chosen to excite modes at large scales. Figure
1�a� shows the magnetic field distribution B�x� used for forc-
ing the inverse cascade simulations, and Fig. 1�c� shows the
corresponding field for the direct cascade simulations. The
field B�x� is generated by choosing a sum of modes in spec-
tral space clustered around some characteristic wave number.
These modes are then assigned random phases and an in-
verse Fourier transform taken to produce a spatially disor-
dered forcing field. The characteristic forcing wave numbers
are around 32, 64, and 128 for the inverse cascade simula-
tions and around 3 for the direct cascade simulation. Note
that, unlike some turbulence forcing schemes which employ
a time-varying random forcing field, the disorder in our sys-
tem is quenched. That is to say, once the initial random
phases are assigned to produce a disordered magnetic field
such as those shown in Figs. 1�a� and 1�c�, the magnetic field
remains fixed for the duration of the simulation.
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Figures 1�b� and 1�d� show instantaneous snapshots of the
vorticity field for the inverse and direct cascades, respec-
tively, at 2562 resolution. Both are in the developed turbu-
lence regime. The two fields are qualitatively very different.
The inverse cascade vorticity field contains many small in-
coherent vortices at the scale of the forcing coexisting with
larger-scale clusters of like-sign vortices. The direct cascade
vorticity field is dominated by a smaller number of more
coherent vortices, which are again comparable in size to the
forcing scale, separated by long ribbons.

The two regimes also differ qualitatively in spectral terms.
Instantaneous energy spectra are shown in Figs. 2 and 3. The
inverse cascade spectrum is very close to the KLB prediction
of k−5/3, despite the fact that the simulation does not attempt
to resolve the direct cascade range. It is accepted that the
inverse cascade scaling of k−5/3 does not require an extensive
direct cascade range despite the fact that it is required in the
theoretical argument �20�. On the other hand, the direct cas-
cade spectrum is much closer to k−4.5 than k−3. This is again
in agreement with extensive numerical and experimental in-
vestigations of the direct cascade where it is typically found
that the presence of the coherent vortices at large scales pro-
duces spectra which are steeper than the KLB prediction �25�
and the k−3 is only observed when very large ranges are
considered for both cascades �17�.

When one talks about properties of parcels of fluid mov-
ing in turbulence, it is natural to adopt a Lagrangian perspec-
tive. That is, one considers a set of N tracer particles, having
positions, xi, i=1, . . . ,N, which follow the fluid flow pas-
sively. The tracer positions satisfy the advection equation

dxi�t�
dt

= v„xi�t�,t…, i = 1, . . . ,N , �3�

where v�x , t� is the solution of Eq. �1�. To study the injection
of energy into the turbulence from the forcing field, we com-
puted the evolution of 100 such Lagrangian tracers. The La-
grangian power is defined as

P�t� = v„xi�t�,t… · f„xi�t�,t… . �4�

For our choice of forcing, f is purely in the y direction so that
the power is a simple product rather than a dot product,
P�t�=vy(xi�t� , t)fy(xi�t� , t). We collected time series of
vy(xi�t� , t) and fy(xi�t� , t) for each tracer. Multiplying these

FIG. 1. �Color online� �a� Magnetic field used to force the
�256�256� inverse cascade simulation. �b� Typical vorticity snap-
shot from the inverse cascade. �c� Magnetic field used to force the
�256�256� direct cascade simulation. �d� Typical vorticity snap-
shot from the direct cascade.
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FIG. 2. �Color online� Snapshots of the energy spectra in the
inverse cascade regime at resolutions of 2562 ���, 5122 ���, and
10242 �+�. Inset �a� shows the corresponding PDFs of the Lagrang-
ian force and associated best fit Gaussian distributions. Inset �b�
shows the corresponding PDFs of the Lagrangian velocity and as-
sociated best fit Gaussian distributions.
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FIG. 3. �Color online� Snapshot of the energy spectrum in the
direct cascade regime at a resolution of 2562. Inset �a� shows the
PDF of the Lagrangian force and associated best fit Gaussian dis-
tribution. Inset �b� shows the PDF of the Lagrangian velocity and
associated best fit Gaussian distribution.
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two together gave us a time series of the Lagrangian power.
The velocity in a turbulent flow, be it Lagrangian or Eulerian,
is a fluctuating quantity. Although the forcing field in Eq. �2�
is deterministic, it is sampled along a random trajectory fol-
lowed by the particles, so that fy(xi�t� , t) is also a fluctuating
quantity. We computed the empirical probability distribution
functions of both vy(xi�t� , t) and fy(xi�t� , t) from our numeri-
cal data. The resulting distributions are shown for the inverse
cascade simulations in the insets of Fig. 2 and for the direct
cascade simulations in the insets of Fig. 3. Both are close to
Gaussian. These results suggest that the Lagrangian power
can be modeled as the product of two almost Gaussian vari-
ables which are presumably correlated with some degree.1

We shall present measurements of the power in due course
and test this assertion. First, however, we need some under-
standing of the probability distribution of products of corre-
lated Gaussian variables. This is addressed in the next sec-
tion.

III. PRODUCTS OF NORMAL VARIABLES:
CRAIG’s XY DISTRIBUTION

The product of two normally distributed random variables
was first considered by Craig �26�. Consider two random
variables x and y, which follow a normal bivariate distribu-
tion with means �x and �y, respectively; standard deviations
�x and �y, respectively; and correlation coefficient �. Let Z
=xy. In �26�, an expression for the moment generating func-
tion of Z was derived and studied and the distribution func-
tion 	xy�Z� was expressed as a difference of two integrals.
For the purposes of the present work, we shall restrict our-
selves to the case of zero means, �x=�y =0, and derive
	xy�Z� directly in a form appropriate for asymptotic analysis.

For this case the joint distribution of x and y is �27�

	�x,y� =
1

2��x�y
�1 − �2

e−�1/2��1−�2��x2/�x
2−2�xy/�x�y+y2/�y

2�.

�5�

To obtain the distribution of Z we begin with the standard
construction

	xy�Z� = E�
�xy − Z�� , �6�

=
1

2�
�

−�

�

dw eiZwE�e−ixyw� . �7�

Here, the expectation is with respect to the distribution �5�.
Calculating E�e−ixyw� is relatively simple:

E�e−ixyw� = �
−�

�

dx�
−�

�

dy 	�x,y�e−ixyw

=
1

2��x�y
�1 − �2� dx e−�1/2�x·A�w�x, �8�

where x= �x ,y� and

A�w� =�
1

�x
2�1 − �2�

iw −
�

�x�y�1 − �2�

iw −
�

�x�y�1 − �2�
1

�y
2�1 − �2�

� . �9�

Evaluating the integral in Eq. �8� is a straightforward appli-
cation of Gaussian integration �see, for example, �28��:

� dx e−�1/2�x·A�w�x =� �2��2

det A�w�
�10�

=
2�

��w + i�−��w + i�+�
,

�11�

where

�+ =
1

�x�y�1 + ��
, �12�

�− =
1

�x�y�1 − ��
. �13�

We are left with the following expression for the product
distribution:

	xy�Z� =
��+�−

2�
�

−�

� eiZwdw
��w − i�+��w + i�−�

. �14�

This integral cannot generally be expressed in terms of el-
ementary functions, except in the case of �=0. In this case,
�−=�+=1 / ��x�y� and Eq. �14� becomes proportional to one
of the integral representations of the zeroth-order modified
Bessel function of the second kind �29�:

	xy�Z� =
2

��x�y
K0	 Z

�x�y

 . �15�

For general values of �, the integral can be evaluated numeri-
cally. Some curves are shown for a range of positive values
of � in Fig. 4. We remark that the PDF is always peaked at
zero with asymmetric exponential tails. The degree of asym-
metry increases with increasing �. This asymmetry reflects
the fact that as the degree of correlation between x and y
increases, they are increasingly likely to have the same sign.
This ensures that the probability of a positive value for the
product increases with increasing � while the probability of a
negative value decreases. For negative values of �, or anti-
correlation between x and y, the asymmetry is in the opposite
sense.

1Describing the PDF of injected power using two correlated nor-
mal variables has also been proposed independently by Falcon et al.
�6�.
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Although we cannot evaluate 	xy�z� in general, it is pos-
sible to calculate the asymptotic behavior for large absolute
values of Z for any �. Let us look at the structure of the
integrand in Eq. �14� in the complex w plane. The analytic
landscape is shown in Fig. 5. There are two singularities on
the imaginary axis at i�+ and −i�−. The square root neces-
sitates the introduction of a branch cut joining these two
singularities which we take to be along the imaginary axis at
�i�+ , i�� and �−i� ,−i�−�. Depending on the sign of Z, we
deform the original contour of integration along the real axis
into either the upper or lower complex plane as shown in
Fig. 5. Careful study of the integrand reveals that it acquires
a phase difference of � upon going from one side of the
branch cut to the other. Considering the case Z�0, we may
thus write

	xy�Z� =
��+�−

2� ��
i�+

i� eiZwdw
��w + i�+��w − i�−�

+ ei��
i�

i�+ eiZwdw
��w + i�+��w − i�−�� .

Rescaling w→ iw and putting the two integrals together we
get

	xy�Z� =
��+�−

�
�

�+

� e−Zwdw
��w − �+��w + �−�

. �16�

Changing variables, w=�++ u
Z , and performing some alge-

bra, we can write this in the form

	xy�Z� =
1

�
� �+�−

�+ + �−

e−�+Z

�Z
�

0

�

du u−1/2

�e−u�1 +
u

��+ + �−�Z�−1/2
. �17�

To finally obtain an asymptotic series, we expand the last
factor using the binomial theorem and integrate term by term
�recalling the definition of the gamma function: 
�x�
=
tx−1e−tdt�. We obtain

	xy�Z� =
1

�
� �+�−

�+ + �−

e−�+Z

�Z
�
k=0

� 	− 1
2

k


	k +

1

2



���+ + �−�−kZ−k. �18�

Following the same approach for Z�0, taking the deformed
contour in the lower half plane, we obtain a very similar
formula with �+ and �− interchanged and Z replaced by �Z�.
Noting that 
� 1

2 �=��, the leading-order asymptotic behavior
for large absolute values of Z is found to be

	xy�Z� � ��
�+�−

���+ + �−�
e−�+Z

�Z
, Z � 0,

� �+�−

���+ + �−�
e−�−�Z�

��Z�
, Z � 0.� �19�

The strong cusp at zero is the second striking feature of the
PDFs shown in Fig. 4. Let us briefly investigate the behavior
of the integral in Eq. �14� near Z=0. A fast way to compute
the leading behavior as Z→0 is to make the change of vari-
ables w=�++u in Eq. �16�, then differentiate the resulting
expression with respect to Z, and apply the integrating factor
e�+Z, to obtain the following differential equation

d

dZ
�e�+Z	xy�Z�� = −

��+�−

�
�

0

� u e−Zudu
�u�u + �+ + �−�

. �20�

Putting the integral on the right into Mathematica, we find
that it can be expressed in terms of a confluent hypergeomet-
ric function of the second kind which has a tabulated Taylor
expansion for small values of its argument �27�:
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�
0

� u e−Zudu
�u�u + �+ + �−�

=
��

2Z
U	1

2
,0,��+ + �−�Z


=
��

2��+ + �−�Z
2

��
+ O�1� .

Substituting this back into Eq. �20� and integrating term by
term gives, to leading order in Z,

	xy�Z� � −
��+�−

�
ln Z + O�1� . �21�

Note that this simplistic approach does not provide an obvi-
ous way of determining the constant which arises upon inte-
grating Eq. �20�. Thus we do not obtain the subleading terms
in the expansion near zero. For this, a more sophisticated
analysis will be required. Nevertheless, this quick calculation
is sufficient to demonstrate that the product distribution is
logarithmically singular near zero. Further, we note that, to
leading order, the singularity is symmetric about zero.

IV. STATISTICS OF LAGRANGIAN POWER
(DIRECT CURRENT)

Let us now return to the Lagrangian power. We have seen
from the insets of Figs. 2 and 3 that in both the inverse and
direct cascade regimes, both the velocity and force are close

to Gaussian in the Lagrangian frame. Some sample time se-
ries of the product of the two, the Lagrangian power, are
shown in Fig. 6. We see that both traces exhibit wild fluc-
tuations, both positive and negative. The time series look far
from Gaussian, as one might expect from the discussion of
the previous section.

It is clear from Eq. �14� that �x�y	xy��x�yZ� is a function
of � only. Therefore, in plotting the numerical data, we use
this rescaling together with the values of the standard devia-
tions presented in Table I to collapse all of our data to similar
curves. The rescaled empirical distribution functions of the
power for both direct and inverse cascades at 2562 resolution
are shown in Fig. 7. They almost collapse to the same curve
and are qualitatively similar to Craig’s XY distribution shown
in Fig. 4. They are strongly peaked at zero with asymmetric
exponential tails. The positive tail decays more slowly than
the negative tails which gives the distribution a net positive
mean value, despite the fact that the most probable value is
zero. The peak at zero is consistent with the logarithmic
singularity suggested by Eq. �21�, but such a divergence is
too weak to observe unambiguously with the resolution we
were able to achieve for the PDF near zero.

To make this more quantitative, we should compare the
empirical distributions with Eqs. �14� and �18�, taking x to be
the force and y to be the velocity. Table I shows the mea-
sured values of the correlation coefficient � between the
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TABLE I. Parameters of the inverse cascade �IC� and direct cascade �DC� simulations to two significant
digits. The columns are, from left to right, rms velocity vrms; kinematic viscosity �; Reynolds number Re
=2�vrms /�; variance of the Lagrangian force, � f

2; variance of the Lagrangian velocity, �v
2; and force-velocity

correlation coefficient �.

Simulation vrms � Re � f
2 �v

2 �

IC 2562 0.32 2.9�10−4 6.8�103 0.082 0.047 0.11

IC 5122 0.42 7.3�10−5 3.6�104 0.063 0.086 0.056

IC 10242 0.57 1.8�10−5 2.0�105 0.21 0.16 0.027

DC 2562 1.0 5.8�10−4 1.1�104 0.34 0.59 0.14
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FIG. 7. �Color online� Rescaled empirical PDFs of Lagrangian
power for both the inverse ��� and direct ��� cascades at 2562

resolution. Solid lines indicate the tails predicted by Eq. �19� for the
measured values of the v-f correlation coefficient �.
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force and velocity and their standard deviations � f and �v.
Figure 7 also includes plots of the tails predicted from Eq.
�19� for the measured � values shown in Table I. In fact, the
curves obtained for �=0.11 and �=0.14 are almost impos-
sible to distinguish at the level of convergence which we
have been able to obtain from our data. Notwithstanding the
question of why the values of � should be so close for the
two regimes, both show excellent agreement for the tails of
the power distribution, confirming our qualitative arguments
that the PDF should be close to Craig’s XY distribution.

Next we investigate whether Craig’s XY distribution re-
mains a good model of the power PDF as the Reynolds num-
ber is increased. Figure 8 shows the rescaled PDFs of the
power obtained for the three inverse cascade simulations at
resolutions of 2562, 5122, and 10242. The corresponding
Reynolds numbers are shown in Table I. It is clear from Fig.
8 that the three PDFs almost rescale to the same curve. There
is a discernible trend toward decreasing asymmetry as the
Reynolds number is increased which is reflected in the de-
creasing value of the correlation coefficient �. This is to be
expected intuitively. As the velocity becomes more turbulent,
it becomes less correlated with the forcing field. Given that
we have established that the average power injected is non-
zero due to the asymmetry of the tails, one might wonder
whether the average power also decreases as Re increases
and the tails grow more symmetric. In fact, the mean of the
XY distribution is �v� f�, so a decreasing � can be compen-
sated for by increasing the variance of the velocity as Re
increases to maintain a constant rate of energy injection.
Nevertheless, it would be interesting to understand exactly
how � decreases with increasing Re. The simulations pre-
sented here, while sufficient to identify the trend, are clearly
insufficient to answer this question quantitatively.

One final point should be made about Fig. 8 which clearly
illustrates the limitations of this kind of modeling. While the
data from the 2562 simulations shown in Fig. 7 are almost
perfectly fitted by Eq. �18�, the 5122 and 10242 simulations
show a smoothing out of the logarithmic cusp at zero, al-

though the tails remain quite well captured. The XY distribu-
tion only describes the power PDF as well as the underlying
force and velocity distributions can be approximated by
Gaussian distributions. Close inspection of the velocity PDFs
for the higher-resolution inverse cascade simulations indi-
cates that the PDFs of velocity become slightly flatter than
Gaussian near zero. This variation presumably accounts for
the smoothing of the cusp. One might speculate about the
physical meaning of this deviation, but that is not the pur-
pose of the present work. Indeed, in the following section,
we shall see that large deviations from Gaussianity for the
forcing field can result from simple modifications of the ex-
perimental setup.

V. STATISTICS OF LAGRANGIAN POWER
(ALTERNATING CURRENT)

Although a Gaussian forcing field of the type observed in
the direct current simulations is often observed experimen-
tally and is often imposed theoretically in order to simplify
calculations, it is by no means true that the forcing must be
Gaussian. Thus, while the results derived above may be ap-
plicable to a range of situations, we do not claim that they
are in any way universal. One of the simplest ways to pro-
duce a non-Gaussian forcing is to apply ac current. We shall
study this case in this section in somewhat less detail than
the dc case. The principle aim is to compare with the Gauss-
ian case where we believe that the simple product distribu-
tion discussed above provides a good model of turbulent
power fluctuations. For the ac simulations discussed below
we take the current to be I�t�=cos�2��t� with �=0.1.

For the case of ac driving, the Lagrangian force is itself a
product of a nontrivial current and a magnetic field:

fy�t� = I�t�B�t� . �22�

Let us assume that B�t� remains Gaussian. This assumption
is well supported by the numerical measurements. Figure 9
shows the magnetic field and velocity distributions for the
inverse cascade regime driven by an alternating current. Both
remain close to Gaussian as in the direct current case. So
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FIG. 8. �Color online� Rescaled empirical PDFs of Lagrangian
power for the inverse cascade at resolutions of 2562 ���, 5122 ���,
and 10242 ��� with corresponding Reynolds numbers as noted in
Table I. The solid line indicates the tails predicted by Eq. �19� for
the most asymmetric case �2562� having �=0.11.
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FIG. 9. �Color online� PDFs of the magnetic field ��� and ve-
locity ��� in the Lagrangian frame for the inverse cascade regime
with ac driving.
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given that B�t� is Gaussian, how is the product f�t�
= I�t�B�t� distributed? Of course, to definitively answer this
question we would need to understand if and how the mag-
netic field is correlated with the current. However the sim-
plest approximation is to assume they are uncorrelated, an-
other assumption which is supported by our measurements.
In this case, we may treat I�t� as a random variable generated
by uniformly sampling the phase �t over the interval �0, 2�

� �.
If we proceed with the calculation, this leads after some
simple manipulations to the following expression for the
PDF of I:

	I�I� = �
−�

� dw

2�
eiwIJ0�w� , �23�

where J0�w� is the zeroth-order Bessel function of the first
kind. This integral has a name-Weber’s discontinuous inte-
gral �see �29�, Chap. IV� and can be evaluated as follows:

	I�I� = � 1
�1 − I2

if �I� � 1,

0 if �I� � 1.
� �24�

This distribution makes sense. The current is a cosine and
cannot take values outside of the range �−1,1�. Furthermore,
the most probable values are �1 since this is where the
cosine function is the flattest. Let us now combine this dis-
tribution with an assumed Gaussian distribution for B�t� with
mean zero and variance �B. Doing some lengthy, but elemen-
tary, calculations in the spirit of our derivation of 	xy�Z�, we
obtain the following proposed distribution for the Lagrangian
force in the case of ac driving:

	 f
�ac��F� =

1

2�
� 2

��B
2 e−F2/4�B

2
K0	 F2

4�B
2 
 . �25�

This formula is compared with the measured Lagrangian
force distribution in Fig. 10. We see that the alternating cur-
rent strongly modifies the distribution of the force from the
Gaussian distribution measured in the direct current case.
However, this modification is correctly captured by Eq. �25�.

Finally, one may ask if the distribution of the power may
be calculated in this case. Here one encounters a problem.
We have learned that the correlation coefficient between the
force and the velocity controls the degree of asymmetry of
the power PDF. In the direct current case, where both the
force and the velocity are Gaussian, the bivariate normal
distribution, Eq. �5�, provides a very reasonable way to cor-
relate the two. In the alternating current case, where the force
follows the distribution of Eq. �25�, it is less obvious how to
correlate the two. In the absence of a more thorough analysis
addressing this issue, we give here the result for the uncor-
related case only. If the force follows the distribution Eq.
�25� with standard deviation �B for the magnetic component
and the velocity is normally distributed with standard devia-
tion, �v, then some lengthy calculations show that the uncor-
related product follows the distribution

	�ac��P� =
1

��B�v
�

−�

� dw

w
e−�P2/2�v

2w2+w2/4�B
2 �K0	 w2

4�B
2 
 .

�26�

This distribution is plotted with the measured values of �B
and �v in Fig. 10 against the empirical distribution of the
Lagrangian power. As expected, it completely fails to capture
the asymmetry of the power distribution. Nevertheless, it is
sufficiently close to convince us that the heuristic arguments
presented here are correct and that some more careful calcu-
lations might be worth doing to attempt to incorporate the
correlation between v and f in a reasonable way. Further-
more, the measured distribution for the power looks qualita-
tively very similar to the distributions measured for the direct
current case. This is despite the fact that the force distribu-
tions are so different in the two cases. This suggests that
some qualitative features of the distribution are more univer-
sal than one might expect from the very particular calcula-
tions performed above for products of Gaussian variables.
These questions may be worth further investigation in the
future.

VI. CONCLUSIONS

We have characterized the injection of energy into a two-
dimensional flow by measuring the injected power in the
Lagrangian frame. The measured distribution is very sharply
peaked at zero with asymmetric exponential tails. It can be
understood as arising from a simple product of correlated
almost-Gaussian variables �the force and the velocity�. From
our analysis, we suggest that the power distribution is actu-
ally logarithmically singular at zero, although this is too
weak of a divergence to distinguish convincingly in our nu-
merical data. We derived an asymptotic expression for the
degree of asymmetry of the tails of the power distribution
which depends only on the correlation coefficient of the
force and velocity. We concluded by comparing the results
for a case—alternating current instead of direct current
forcing—for which the observed force distribution is far
from Gaussian. The qualitative features of the power PDF
remain unchanged, although it will be hard to quantify the
measurements as easily as in the Gaussian case.
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FIG. 10. �Color online� PDFs of the Lagrangian force ��� and
power ��� for the inverse cascade regime with ac driving.
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